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Abstract. The current voltage characteristics of a negatively biased electron emitting electrode immersed
in a two-electron temperature plasma are analyzed by a simple one dimensional fluid model. Based on the
assumption that the electron density in the pre-sheath region obeys the Boltzmann law the Bohm criterion
is derived in the form of a transcendental equation for the Mach number, which can have up to 3 solutions.
According to these solutions the ion velocity at the sheath edge can be determined either by the hot or
by the cool electron temperature. When it is determined by the cool electron temperature and the hot
electron temperature is high enough the critical electron emission current from the collector can have a
very pronounced local maximum and a minimum when regarded as a function of the electrode potential.
Because of that the current voltage characteristics of the electrode may exhibit up to 3 different floating
potentials. This result is in good agreement with the experimental observations reported in [J. Appl. Phys.
63, 5674 (1988)].

PACS. 52.27.Cm Multicomponent and negative-ion plasmas – 52.40.Kh Plasma sheaths

1 Introduction

Emissive probes are a widely used plasma diagnostic
tool [1] for the determination of the plasma potential in
various plasma devices. An emissive probe is heated to
a thermoelectron emitting temperature. When the probe
bias is negative with respect to the plasma potential, the
electron emission current flows from the probe to the
plasma. This current can be decreased by space charge of
negative electrons that can accumulate at the probe sur-
face, if electron emission from the probe is too high. For a
small electron emission and/or a strongly negative bias of
the probe the potential distribution in the sheath remains
monotonic, so that all emitted electrons are accelerated
into the plasma. Such electron emission is called temper-
ature limited emission, because the electron current from
the probe into the plasma is limited by thermal emission
of electrons from the probe surface. As the electron emis-
sion increases (when the temperature of the probe is in-
creased), the electron accelerating electric field decreases
and, eventually, the critical electron emission is reached
when the electric field at the probe surface becomes zero
and the condition for the so-called space charge limited
emission is reached (Fig. 1). If the electron emission is fur-
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ther increased, a potential dip, a so-called virtual cathode,
is created, which drives the emitted electrons back to the
probe. Such emission is called supercritical. The problem
of sheath formation in front of a negative electrode that
emits electrons has been studied by several authors [2–7].

On the other hand the potential formation in plasmas
containing energetic electrons has also been studied exten-
sively [8–15], because plasmas with electron velocity distri-
butions containing energetic tails are readily produced in
many plasma machines for material processing as well as
in laboratory and fusion devices. In these models energetic
electrons are treated either as monoenergetic or thermal
beams or as Maxwellian distributed electrons with higher
temperature and lower density than the basic electron
population. Attempts to treat simultaneously the effect
of emitted and energetic electrons are more rare [7,15].

Recently the problem of the space charge limited emis-
sion current from a negative electrode has again been ad-
dressed by Takamura and coworkers [16–19]. They devel-
oped a one-dimensional fluid model, where they treated
an infinitely large, planar, negative electrode (collector)
that is immersed in plasma which contains a group of
Maxwellian electrons and a group of cold singly charged
positive ions. They assumed that the electrode emits mo-
noenergetic electrons with zero initial velocity and that
the flux of emitted electrons is proportional to the flux of
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incoming electrons. The proportionality factor is assumed
to be the constant emission coefficient.

In a recent paper [20] we have extended their model by
the assumption that the hot electron population is present
in the plasma, but the repulsion of the electrons in the
pre-sheath potential drop was not taken into account. We
have also allowed a non-zero initial velocity of the emitted
electrons. The floating and the current collecting electrode
were analyzed. In the next paper [21] the repulsion of the
electrons in the pre-sheath potential drop was taken into
account and the modification of the Bohm criterion in the
form of a transcendental equation for the Mach number
was derived. Only the floating electrode was analyzed. In
this paper the study is somehow completed by the analysis
of the current collecting electrode and in the same time
taking into account the repulsion of electrons in the pre-
sheath potential drop for the space charge limited and the
temperature limited electron emission.

Because the model has previously been presented in
2 parts [20,21] the complete presentation of the model
is given in a more concise form in the next section. In
Section 3 some results of the model are shown. In Section 4
some conclusions are given.

2 Model

2.1 Basic assumptions and the Poisson equation

We consider an infinite plane material surface (collector),
located at x = 0 in contact with a plasma filling the half-
space x > 0 (Fig. 1). Far from the collector the plasma is
quasi-neutral and the potential there is taken as a refer-
ence potential, which is set to zero, Φ = 0. Also the electric
field there is zero. The collector is biased to a certain po-
tential ΦC , which is negative and smaller (more negative)
than Φ(x) for any x > 0. As one approaches the collector,
the potential slowly decreases. This region of the slow po-
tential drop is called the pre-sheath. There the plasma is
assumed to be still quasi-neutral, although a small elec-
tric field exists in this region. This electric field accelerates
the singly charged positive ions towards the collector and
negative electrons in the opposite direction. The positive
ions are assumed to be cold and at rest at a very large
distance from the collector. In our model the very large
distance from the collector means the region beyond the
pre-sheath. At a certain distance x = d from the collector,
the plasma potential has a value ΦS and there the ions
reach the velocity v0 in the direction towards the collec-
tor. The plane at x = d is called the sheath edge. In our
model the sheath thickness is much larger than the Debye
length, i.e. d � λD, where λD is defined in (19), but in
the same time d is much smaller than the characteristic
length L of the pre-sheath, so we have λD � d � L. In
the sheath the potential drops from the value ΦS at the
sheath edge to the value of the collector potential ΦC .

We assume that there are two electron populations in
the plasma. Both electron groups have Maxwellian veloc-
ity distribution with two different temperatures and zero
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Fig. 1. Schematic of the model. The potential Φ(x) very far
away from the collector is zero and at the sheath edge (at
x = d) it is ΦS. The pre-sheath length scale L is much larger
than the sheath thickness d. When the emission is critical the
electric field at the collector surface is zero.

average velocities. We call them the cool and the hot elec-
trons. We also assume that the collector emits electrons.
The emitted electrons are assumed to leave the collector
all with the same initial velocity vC , which in our model
is allowed to be different from zero, and then they are
accelerated by the potential in the sheath away from the
collector.

The potential in the sheath Φ(x) is determined by the
Poisson equation:

d2Φ

dx2
= −e0

ε0
(ni(x) − n1(x) − n2(x) − n3(x)) . (1)

Here ni(x) is the ion density, n1(x) is the cool electron
density, n2(x) is the hot electron density and n3(x) is the
density of the emitted electrons in the sheath. The bound-
ary conditions at the sheath edge are:

Φ(x = d) = ΦS ,
dΦ

dx
(x = d) → 0. (2)

The assumption that the electric field at the sheath edge is
negligibly small is justified because of our approximation
that λD � d.

The densities of the cool and of the hot electrons in
the sheath are assumed to obey the Boltzmann relation:

n1(x) = n1S exp
(

e0(Φ(x) − ΦS)
kT1

)
,

n2(x) = n2S exp
(

e0(Φ(x) − ΦS)
kT2

)
. (3)

Here n1S and n2S are the cool and the hot electron den-
sities at the sheath edge, T1 and T2 are the cool and
the hot electron temperatures, k is the Boltzmann con-
stant and e0 is the elementary charge. Note that in the
sheath the electron velocity distribution function is ac-
tually a cutoff Maxwellian. At the distance x from the
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collector (x < d) an electron that has almost reached the
collector, but has then been repelled will have the veloc-
ity

√
2e0 (Φ(x) − ΦC) /me in the direction away from the

collector. The electron density as a function of the poten-
tial is then obtained by the integration of such a velocity
distribution function over the velocity. This gives the elec-
tron density in terms of the error function of the potential.
Further analysis of the Poisson equation then requires the
integration of error functions over the potential and this
makes the model much more complicated. So we assume
the Boltzmann distribution of the electrons in the sheath
in order to keep the model as simple as possible.

At the sheath edge, the ion density is nS and the ve-
locity of the ions towards the collector is v0. From the
assumption of the ion flux and energy conservation the
ion density in the sheath can be obtained:

ni(x) =
nS√

1 − 2e0(Φ(x)−ΦS)
miv2

0

. (4)

The emitted electrons are assumed to leave the collector
all with the same initial velocity vC . From the assumption
of energy and flux conservation of the emitted electrons
their density in the sheath n3(x) can be related to their
density at the sheath edge n3S :

n3(x) =
n3S√

1 − 2e0(Φ(x)−ΦS)
2e0(ΦC−ΦS)−mev2

C

. (5)

The assumption that the sheath is collisionless is fully
justified in our approximation where d � L.

We now introduce the following variables. The ion ve-
locity at the sheath edge v0 is written in the following
form:

v0 = M

√
kT1

mi
. (6)

The dimensionless parameter M is called the Mach num-
ber. The explanation for this will be given a little later in
Section 2.2. In similar way we write down the velocity of
the emitted electrons at the collector vC :

vC = N

√
kT1

mi
. (7)

The potentials at the sheath edge, in the sheath and at the
collector are normalized to the cool electron temperature:

ΨS =
e0ΦS

kT1
, Ψ =

e0(Φ(x) − ΦS)
kT1

,

ΨC =
e0(ΦC − ΦS)

kT1
. (8)

At the sheath edge the plasma is quasi-neutral:

nS = n1S + n2S + n3S . (9)

It is assumed that the ratio between the hot and the
cool electron density at the sheath edge βS is a given
parameter:

βS =
n2S

n1S
. (10)

The electron emission from the collector may be either
secondary or thermal. Secondary electron emission may
be triggered by various kinds of impacting particles like
electrons, ions and photons. The corresponding emission
coefficients, which give the number of the emitted elec-
trons per incident particle, depend on the energy and on
the species of the impacting particle and on the material of
the collector. Some related data can be found in e.g. [22] —
chapter 4. If for example the collector is made of tungsten
the emission coefficient is equal to 0.21 if the impacting
ions are He+, 0.30 for Ne+, 0.09 for Ar+ and 0.02 for Xe+.
For platinum and the ions H+ and H+

2 it is 3 × 10−3 for
N+ and N+

2 it is 5×10−3 and for O+ and O+
2 it is 5×10−4.

These emission coefficients are almost independent of the
energy of the impacting ions for energies up to 1 keV.
Typical values for the electron emission coefficient intro-
duced in equation (12) are between 0.4 and 1.6 for many
metals and for the energies of the impacting electrons up
to several keV. Because the electron emission coefficient is
usually much larger than the emission coefficients for var-
ious ions, the ion contribution to the secondary emission
is often neglected.

On the other hand the current density of the thermally
emitted electrons is given by the Richardson formula:

jR = ART 2
C exp

(−e0Φw

kTC

)
, (11)

where AR is the Richardson constant, TC is the abso-
lute temperature of the collector, Φw is the work func-
tion of the collector and e0 is the elementary charge.
The theoretical value of the Richardson constant is
AR = 4πmee0k

2/h3 = 120 A/(cm2 K2). Actual values
for various metals are different. For example for tung-
sten the value is approximately 60 A/(cm2 K2). The
value of the work function for tungsten is approximately
e0Φw ≈ 4.5 eV.

In our model we include the secondary emission of elec-
trons caused by the impacting ions, the secondary emis-
sion of electrons caused by the impacting electrons and the
Richardson emission. The current density of the emitted
electrons is therefore written as the sum of 3 contributions:

j3 = γiji + γ (j1 + j2) + jR. (12)

Here γi is the secondary emission coefficient for the
ions and γ is the secondary emission coefficient for the
electrons.

Because all the fluxes are conserved in the sheath, we
write down their values at the sheath edge:

j1 = e0n1S exp
(

e0(ΦC − ΦS)
kT1

)√
kT1

2πme
, (13)

j2 = e0n2S exp
(

e0(ΦC − ΦS)
kT2

)√
kTe2

2πme
, (14)

j3 = e0n3Sv3S = e0n3SN

√
kT1

mi

√
1 − 2e0(ΦC − ΦS)mi

N2kT1me
,

ji = e0nSM

√
kT1

mi
. (15)
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From equations (9)–(15) we get:

n1S = nS

1 − JR+Mγi√
N2− 2ΨC

µ

1 + βS + G
, n2S = nS

βS

(
1 − JR+Mγi√

N2− 2ΨC
µ

)

1 + βS + G
,

n3S = nS

G + (1+βS)(JR+Mγi)√
N2− 2ΨC

µ

1 + βS + G
. (16)

The following variables have been introduced:

µ =
me

mi
, Θ =

T2

T1
,

G =
γ
(
exp(ΨC) + βS

√
Θ exp

(
ΨC

Θ

))
√

2π(N2µ − 2ΨC)
,

JR =
jR

e0nS

√
kT1
mi

. (17)

With the label G we follow the notation of Ye et al. [16,17].
If we put βS = N = 0, (no hot electrons in the plasma
and zero initial velocity of the emitted electrons) G defined
in (17) becomes G defined by Ye et al. in [16].

Equations (3), (4), (5) and (16) are combined and in-
serted into the Poisson equation (1):

d2Ψ

dz2
=

1
1 + βS + G

×

⎛
⎜⎜⎜⎜⎜⎜⎝

(
1 − JR+Mγi√

N2− 2ΨC
µ

)(
exp(Ψ) + βS exp

(
Ψ
Θ

))

+

(
G + (1+βS)(JR+Mγi)√

N2− 2ΨC
µ

)
1√

1− Ψ

ΨC− N2µ
2

⎞
⎟⎟⎟⎟⎟⎟⎠

− 1√
1 − 2Ψ

M2

, (18)

where the normalized coordinate z has been introduced in
the following way:

z =
x

λD
, λD =

√
ε0kT1

nSe2
0

, (19)

the normalized potential is defined in (8) and the normal-
ized Richardson current density JR is defined by (17).

2.2 The Bohm criterion

In this subsection we briefly discuss the general Bohm
criterion, which represents a necessary condition for the
existence of a sheath in the asymptotic limit considered
here (λD � d � L), and use it to estimate the ion velocity
at the sheath edge. The potential profile in the sheath is
determined by the Poisson equation (1):

−ε0
d2Φ

dx2
= 	(x) = e0 (ni(x) − n1(x) − n2(x) − n3(x)) ,

(20)

where 	(x) is the electric charge density in the sheath. At
the sheath edge the boundary conditions (2) are imposed
and also at the sheath edge the plasma is quasi-neutral:
	(x = d) = 0. So near the sheath edge the charge density
can be Taylor expanded to the first order term:

	(Φ) = 	(x = d) + Φ
d	

dΦ

∣∣∣∣∣
Φ=ΦS

. (21)

When we insert (21) into (20), we obtain:

−ε0
d2Φ

dx2
= Φ

d	

dΦ

∣∣∣∣∣
Φ=ΦS

, (22)

from which the condition for a non-oscillatory solution of
equation (22) is found to be:

[
d	

dΦ

]
Φ→ΦS

≤ 0.

This expression is usually referred to as the general Bohm
criterion [24]. For non-divergent geometries, like in our
case, the Bohm criterion is always satisfied in its marginal
form, this means with the equality sign:

[
d	

dΦ

]
Φ→ΦS

= 0,

or equivalently,

dni

dΦ

∣∣∣∣∣
Φ→ΦS

=
dne

dΦ

∣∣∣∣∣
Φ→ΦS

,

where
ne = n1 + n2 + n3 (23)

is the electron density. Depending on how the ions and
the electrons are treated (e.g. by fluid or kinetic models),
the Bohm criterion assumes different special forms. For
thermal ions and arbitrary electron density profiles ne(Φ)
the ion velocity at the sheath edge is given by [24]:

v0 =

√√√√k(T ∗
e + κTi)
mi

∣∣∣∣∣
x=d

, (24)

where κ is the polytropic coefficient and T ∗
e is the electron

screening temperature defined as [24,25]:

T ∗
e =

e0ne

k dne

dΦ

. (25)

We now insert (3) and (5) together with (16) into (23).
The obtained electron density ne(Φ) is then differentiated
with respect to Φ. Both ne(Φ) and dne/dΦ are the inserted
into (25) and the screening temperature T ∗

e is calculated.
Then T ∗

e and Ti = 0 are inserted into (24) and calculated



T. Gyergyek and M. Čerček: Fluid model of the current-voltage characteristics 445

at the sheath edge x = d. Using the variables defined
in (6), (8), (10) and (17) equation (24) becomes:

M =

√√√√√√√
1 + βS + G(

1 − JR+Mγi√
N2− 2ΨC

µ

)(
1 + βS

Θ

)
+

G+
(1+βS)(JR+Mγi)√

N2− 2ΨC
µ

2
(

ΨC−N2µ
2

)
.

(26)
Note that if there are no hot electrons (βS = 0) and no
emitted electrons (γi = G = JR = 0), then equation (26)
gives M = 1, which is the “usual” Bohm criterion. If only
the hot electrons are present (βS > 0), but there is no
electron emission from the collector γi = G = JR = 0,
the equation (26) is identical to the modified Bohm crite-
rion derived by Takamura [9]. When γi is not zero, equa-
tion (26) is a third order equation for M .

2.3 Potential drop in the pre-sheath

Note that βS is the hot to cool electron density ratio at
the sheath edge. One may expect that this ratio is not the
same at the sheath edge and in the unperturbed plasma
beyond the pre-sheath region. By the assumption of our
model the potential in the pre-sheath decreases monoton-
ically from Φ(x) = 0 at x ≥ L to Φ(x) = ΦS at x = d.
Therefore part of the cool and of the hot electrons that
move towards the collector are repelled from it back into
the plasma by this potential drop. It is to be expected
that a larger fraction of the cool electrons than of the hot
electrons will be repelled by the potential drop in the pre-
sheath. In order to calculate the density decrease of both
electron populations from the unperturbed plasma to the
sheath edge, we would have to solve the full scale plasma-
sheath matching problem [23] for a plasma with 3 electron
populations. This is far beyond the scope of this paper.
But because we need a relation between the ion sound ve-
locity v0 at the sheath edge and the pre-sheath potential
drop ΦS we need to briefly sketch the lines along which
such a problem could be treated.

The analysis we have presented so far has been done
on the so-called sheath scale, where the possible collisions,
ionizations and effects of non-planar geometry inside the
sheath can be neglected, because the sheath is much thin-
ner than the characteristic length scale of the pre-sheath,
d � L. On the other hand treatment of the pre-sheath re-
gion is rather complicated because it involves the full diffi-
culty of an inhomogeneous plasma in a self-consistent field.
For a more detailed discussion of this problem the reader is
referred to Section 5 of the review paper of Riemann [24].
The pre-sheath region may in some cases include the entire
plasma body — e.g. in the collisionless plasma column. In
other cases the pre-sheath region may be small compared
to the entire plasma, like e.g. the Knudsen layer of a colli-
sion dominated plasma. In any case the dimension of the
pre-sheath is always such that it must be quasi-neutral
and the problem must be treated on the so called plasma
scale, where the possible collisions, ionizations and effects
of non-planar geometry must not be a-priori neglected. In

the quasi-neutral pre-sheath the neutrality condition must
be fulfilled:

ni(x) − n10 exp
(

e0Φ(x)
kT1

)
− n20 exp

(
e0Φ(x)

kT2

)

− n3(Φ(x)) = 0. (27)

In the plasma-sheath analysis the electron density is usu-
ally assumed to be a known function of the potential.
For the hot and the cool electrons we have assumed that
they both obey the Boltzmann relation also in the pre-
sheath, not only in the sheath. Dependence of the density
of the emitted electrons on the potential n3(Φ(x)) is also
assumed to be a known function, but it does not have
to be specified because it is not essential for our present
analysis. So the cool and the hot electron densities n1S

and n2S at the sheath edge and the respective electron
densities n10 and n20 at x ≥ L are related by:

n1S = n10 exp (ΨS) , n2S = n20 exp
(

ΨS

Θ

)
. (28)

We define the hot to cool electron density ratio β0 at x ≥
L by:

β0 =
n20

n10
. (29)

From (29), (28) and (10) one obtains:

βS = β0 exp
(

ΨS (1 − Θ)
Θ

)
. (30)

Note that ΨS is negative, so when Θ > 1 also βS > β0.
Because the pre-sheath is quasi-neutral the dynamic

ion density decrease must not exceed the electron density
decrease. Since the Bohm criterion is not fulfilled in the
pre-sheath [24], there must exist in the pre-sheath a mech-
anism that compensates the ion density decrease caused
by the acceleration of the ions in the pre-sheath. It is
beyond the scope of this paper to analyze such mecha-
nisms in detail. Instead we again only quote the result
of Riemann [24]. This result is the following. When the
ions are cold (Ti = 0), like in our case, in the pre-sheath
either (i) the ion current density increases, and/or (ii)
the total ion energy decreases due to a retarding force.
The increase of the ion current density can be caused ei-
ther by: (1) the concentrating geometry, like spherical or
cylindrical, where the ion trajectories converge towards
the sheath edge and/or (2) volume ionization in the pre-
sheath. On the other hand the retarding force that causes
the loss of energy of the ions in the pre-sheath is due to
elastic collisions of the ions with other types of particles
like electrons and neutrals. In a fully ionized plasma the
ions can exchange momentum only with electrons. In a
weakly ionized plasma the ions loose their energy also by
the collisions with neutrals.

In our one-dimensional model we treat an infinitely
large planar electrode in an unmagnetized plasma. So we
have a planar geometry and the geometric effects can
not cause the ion current density increase. The remain-
ing mechanisms are therefore the decrease of the total ion
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M =

√√√√√√√√
1 + βS(M) + G(M)⎛

⎝1 − JR+Mγi√
N2− 2ΨC

µ

⎞
⎠(

1 + βS(M)
Θ

)
+

G(M)+
(1+βS(M))(JR+Mγi)√

N2− 2ΨC
µ

2

(
ΨC− N2µ

2

)

≡ f(M), (39)

energy due to a retarding force caused by the momentum
exchange collisions of the ions with electrons and neutrals
and the volume ionization and recombination in the pre-
sheath. The ion continuity equation for a stationary pre-
sheath in one dimension can be written in the following
way:

vi
dni

dx
+ ni

dvi

dx
= Si. (31)

Here Si the ion source term, which gives the difference
between the number of created and destroyed ions per
unit volume and per time unit due to collisions between
the electrons and the neutrals and the electrons and the
ions. The equation of motion for ions in one dimension
reads:

mivi
dvi

dx
+ e0

dΦ

dx
= −Ri − mivi

ni
Si, (32)

where Ri is the effective ion friction force caused by the
momentum transfer collisions between the ions and the
electrons and between the ions and the neutrals. This force
is usually written in the following form:

Ri = mi

∑
k

νik (vi − vk) ,

where νik is the frequency for momentum exchange colli-
sions between the ions and the species of type k. In our
case the summation over k would include electrons and
neutrals.

Equations (27), (32) and (31) form a system of 3 equa-
tions for Φ(x), vi(x) and ni(x). The boundary conditions
are given by the values of Φ, ni and vi, at the sheath
edge, which are ΦS , v0 (Eq. (6)) and nS . It is of course
beyond the scope of this paper to analyze the system of
equations (27), (32) and (31). Instead we only note the
following. The ion fluid equation of motion (32) can be
multiplied by dx and integrated:

miv
2
i (x)
2

+ e0Φ(x) = −
∫ (

Ri +
mivi

ni
Si

)
dx. (33)

The integral on the right hand side of equation (33) can
only be done if the system (27), (32) and (31) is solved and
vi(x) and ni(x) are found. So we are now forced to make
an oversimplification in order to find a relation between v0

and ΦS . We assume that at a very large distance from the
collector (x ≥ L) the ion velocity is zero and the potential
there is also zero. At the sheath edge the ion velocity is v0

and the potential is ΦS . These two values are inserted
into (33) and the integral on the right hand side is replaced
by Ec which is an average energy loss of an ion caused by
the collisions in the pre-sheath. Ec is treated as a constant
parameter. Equation (33) turns into:

e0ΦS +
1
2
miv

2
0 + Ec = 0. (34)

From (34), (6) and (8) it is straightforward to calculate
the potential drop in the pre-sheath:

ΨS = −M2

2
− ϕ, (35)

where

ϕ =
Ec

kT1
. (36)

From (30) we then obtain:

βS(M) = β0 exp

((
M2 + 2ϕ

)
(Θ − 1)

2Θ

)
. (37)

So βS becomes a function of M . When (37) is inserted
into the auxiliary emission coefficient G defined in (17), G
also becomes a function of M :

G(M) =

γ

(
exp(ΨC) + β0 exp

(
(M2+2ϕ)(Θ−1)

2Θ

)√
Θ exp

(
ΨC

Θ

))
√

2π(N2µ − 2ΨC)
.

(38)

When (37) and (38) are inserted into the Bohm crite-
rion (26) the later becomes a transcendental equation
for M , which can be solved numerically if the other pa-
rameters are known:

see equation (39) above

where βS(M) is given by (37) and G(M) is given by (38).
Solving equation (39) for M means finding the intersection
between the straight line M = M and the function f(M)
defined on the right hand side of equation (39).

2.4 Critical electron emission

It is known that:

1
2

d

dz

(
dΨ

dz

)2

=
dΨ

dz

d2Ψ

dz2
.

The Poisson equation (18) is multiplied by dΨ/dz. In
this way differentials dz cancel out and equation (18) is
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integrated once over Ψ from 0 to ΨC :

1
2

(
dΨ

dz

)2

Ψ=ΨC

=
1

1 + βS + G

×

⎡
⎢⎢⎢⎢⎢⎢⎣

(
exp(ΨC) − 1 + βSΘ

(
exp

(
ΨC

Θ

)− 1
))

×
(

1 − JR + Mγi√
N2 − 2ΨC

µ

)
+ 2

(
G + (1+βS)(JR+Mγi)√

N2− 2ΨC
µ

)

×
(
ΨC − N2µ

2

)(
1 −

√
1 − ΨC

ΨC−N2µ
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

− M2

(
1 −

√
1 − 2ΨC

M2

)
. (40)

Equation (40) enables one to calculate the electric field at
the collector if all the other parameters are known. On the
left hand side of equation (40) the boundary condition (2)
has been taken into account. Note that βS is given by (37),
G is given by (38) and M is given by (39).

If the emission of electrons from the collector increases,
eventually the density of the emitted electrons and conse-
quently the negative space charge in front of the collector
becomes so high, that the electric field at the collector
becomes zero. When this happens, the left hand side of
equation (40) is equal to zero. Equation (40) with the left
hand side equal to zero is called the zero electric field con-
dition at the collector.

2.5 Current to the collector

Next we would like to find an expression for the electric
current density to the collector as a function of the collec-
tor potential. Using the same normalizing current density
as in equation (17) the fluxes (13)–(15) can be written in
the following dimensionless form:

J (1)
e =

1√
2πµ

1 − JR+Mγi√
N2− 2ΨC

µ

1 + βS + G
exp (ΨC) , (41)

J (2)
e =

βS

√
Θ√

2πµ

1 − JR+Mγi√
N2− 2ΨC

µ

1 + βS + G
exp

(
ΨC

Θ

)
, (42)

J (3)
e =

G
√

N2 − 2ΨC

µ + (1 + βS)(JR + Mγi)

1 + βS + G
, (43)

Ji = M. (44)

The total current density Jt is a sum of all 4 contributions.
Equations (41)–(44) give absolute values of the current
densities of individual particle species. In order to find
the total current density Jt the fluxes Ji, J

(1)
e , J

(2)
e and

J
(3)
e must be taken with the appropriate sign. In order to

obtain the current in the technical direction, consistent
with Figure 1 we take J

(1)
e and J

(2)
e with the positive sign

and Ji and J
(3)
e with the negative sign:

Jt = J (1)
e + J (2)

e − J (3)
e − Ji =

1
1 + βS + G

×

⎡
⎢⎢⎢⎣

1− JR+Mγi√
N2− 2ΨC

µ√
2πµ

(
exp (ΨC) + βS

√
Θ exp

(
ΨC

Θ

))

−
(
G
√

N2 − 2ΨC

µ + (1 + βS)(JR + Mγi)
)

⎤
⎥⎥⎥⎦− M.

(45)

Again βS is given by (37), G is given by (38) and M
is given by (39) so that expressions (41)–(45) are much
longer and more complicated as they seem at a first glance.

3 Results

In an experiment the hot to cool electron density and
temperature ratio at a large distance from boundary elec-
trodes is determined by the plasma production. Usually
the density of the energetic electron population is smaller
than the density of the cool electrons. Because of that we
shall only consider the case when β0 < 1 in this work. On
the other hand the temperature of the hot electrons can
be rather high. In this work we will present the results
of the model with the selected values of Θ up to 50, but
also higher values, up to several hundred could in princi-
ple be considered. The mass of ions is determined by the
choice of gas. In this work we show some results for hy-
drogen plasma (µ = 1/1836), but also other gases could
be analyzed.

The Richardson current density is determined by the
temperature of the collector and the emission coefficient
is given by the properties of the collector material. The
velocity distribution function of the emitted electrons is
usually not known, but very often they are treated as mo-
noenergetic. We do the same in our model, but we allow
the initial velocity vC of the electrons at the collector to
be different from zero. This velocity is selected as an inde-
pendent parameter of the model. Monoenergetic emitted
electrons are of course an idealization. In an experiment
they always have some velocity distribution. If the electron
emission is thermal and the temperature of the collector
is TC and vC is set equal to the thermal velocity of elec-
trons with the temperature TC , we get:

vC =

√
kTC

me
= N

√
kT1

mi
, N =

√
TCmi

T1me
.

For TC = 2000 K, kT1 = 1 eV and hydrogen ions we get
N = 17.8. In this way an orientation value for the order
of magnitude of N that should be examined is obtained.
The values of N between 0 and 90 are considered in this
work in order to illustrate the effect of the nonzero initial
velocity vC of the emitted electrons.

The parameter ϕ gives an average value of the energy,
normalized to the cool electron temperature, lost by the
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Fig. 2. In the top row ΨC , M and
JR found from the solutions of the sys-
tem of equations (39), (40) and (45)
are plotted versus ϕ. The other param-
eters are: β0 = 0.02, Θ = 16, N = 0,
γi = γ = 0 and µ = 1/1836. In the
bottom row ΨC , M and γ found from
the solutions of the system of equa-
tions (39), (40) and (45) are plotted
versus ϕ. In this case the other param-
eters are: β0 = 0.02, Θ = 16, N = 0,
γi = JR = 0 and µ = 1/1836.

ions because of the collisions that they suffer in the pre-
sheath. In an experiment such a parameter would be de-
termined by the pressure and by the degree of ionization.
In order to find out what are the relevant values of ϕ to be
selected we do the following. We select β0 = 0.02, Θ = 16,
N = 0, γi = γ = 0 and µ = 1/1836 and we solve the
system of equations (39), (40) and (45) for ΨC , M and JR

while we gradually increase ϕ. The total current density Jt

in (45) and the derivative dΨ/dz in (40) are set to zero. So
ΨC is the potential drop in the sheath that corresponds to
the floating potential of the collector and JR corresponds
to the space charge limited (critical) electron emission. In
this way plots of ΨC , M and JR versus ϕ are obtained and
they are shown in the top row of Figure 2. In the bottom
row plots of ΨC , M and γ versus ϕ are shown. In this
case ΨC , M and γ are found as the solutions of the same
system of equations (39), (40) and (45) with the same pa-
rameters: β0 = 0.02, Θ = 16, N = 0 and µ = 1/1836, only
now γi = JR = 0 is selected.

For small values of ϕ the system of equations only has
1 solution with M close to 1. As ϕ is increased ΨC de-
creases (becomes more negative) while M increases. JR

also increases but then reaches a maximum and starts to
decrease. Similar is valid also for γ in the bottom right fig-
ure. When ϕ reaches a certain value ϕ1, which in the case
presented in Figure 2 is around 1.28 suddenly 2 additional
solutions of the system of equations (39), (40) and (45) ap-
pear. One solution has M close to 4, which corresponds to√

Θ and the other solution has M between 1 and
√

Θ. It is
convenient to distinguish the solutions by the correspond-
ing Mach number M . In the view of the results shown in
Figure 2 we will call the solution that is found for small
values of ϕ and has M close to 1 the low solution. The
solution with the largest M , which is close to

√
Θ will be

called the high solution and the solution with the inter-

mediate value of M will be called the medium solution.
When ϕ exceeds a certain value ϕ2, which in the case pre-
sented in Figure 2 is around 3.63, suddenly the low and
the medium solution disappear and only the high solution
remains. From the results shown in Figure 2 we conclude
that relevant values of ϕ to be selected for the analysis of
the results of the model may go up to 6 or 7. Note that
when the system of equations (39), (40) and (45) is solved
for the critical emission current density JR with γi = γ = 0
or for the critical emission coefficient γ with γi = JR = 0
the solutions for ΨC and M are in both cases identical.

We begin the presentation of the results of our model
by the analysis of the Bohm criterion — equation (39).
In Figure 3 we show the solutions of equation (39) for
different values of the parameters β0, Θ, ϕ, γ, N and JR,
while γi is always zero. These solutions are in fact the
intersections between the curve f(M) defined in (39) and
the straight line M = M .

The parameters that are not changed in all 6 figures
are µ = 1/1836 (hydrogen plasma), ΨC = −20 and γi = 0.
In the top left figure we select Θ = 25, ϕ = 0.1, JR = 0
and γi = γ = 0. Then f(M) versus M curves are plotted
for 3 different β0. In the top middle figure we put β0 = 0.5,
ϕ = 0.2, JR = 0 and γi = γ = 0 and we plot f(M) versus M
curves are plotted for 3 different Θ. In the top right figure
the following parameters are selected: β0 = 0.02, Θ = 20,
γi = γ = 0 and JR = 0. Then f(M) versus M curves are
drawn for 3 different values of ϕ. In the bottom left figure
we show f(M) versus M curves for 3 values of JR. The
other parameters are: β0 = 0.1, Θ = 20, ϕ = 0.1, γi = γ = 0
and N = 0. In the bottom middle figure f(M) versus M
curves are shown for 3 values of γ. The other parameters
are: β0 = 0.1, Θ = 20, ϕ = 0.1 and γi = JR = 0. Finally
in the bottom right figure we plot f(M) versus M curves
for 3 values of N , which are N = 0, N = 45 and N = 90.
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Fig. 3. Graphs of the function f(M)
defined in (39) for various values of pa-
rameters β0, Θ, ϕ, γ, N and JR. Param-
eters that are the same in all 6 figures
are µ = 1/1836 and ΨC = –20. The val-
ues of other parameters are given in the
text.

The other parameters are: β0 = 0.1, Θ = 20, ϕ = 0.1,
JR = 20 and γi = γ = 0. The variation of N has almost
no effect on f(M) curves and the same is valid also for
the variation of ΨC .

From the top 3 figures of Figure 3 one can see that
the effect of β0, Θ and ϕ to the solutions of equation (39)
is similar. If the values of those 3 parameters are small,
then equation the (39) only has 1 solution with M close
to 1. This is the low solution. If they are large, then equa-
tion (39) again only has 1 solution, but this time with
with M close to

√
Θ. This is the high solution. For a wide

range of values of β0, Θ and ϕ equation (39) has 3 solutions
with M close to 1, close to

√
Θ and with an intermediate

value of M — the medium solution. On the other hand
the emission parameters JR, γ and N have much smaller
impact on the f(M) curves.

Now we proceed to analyze the current-voltage charac-
teristics of the collector using the model presented in the
previous section. In our model the plasma potential far
away from the collector is set to zero. The collector po-
tential Ψcol is therefore a sum of the potential drop in the
sheath ΨC and in the pre-sheath ΨS , Ψcol = ΨS + ΨC . But
for simplicity we take the potential drop in the sheath ΨC

for the independent variable and in the figures we plot the
current densities as functions of ΨC .

The current voltage characteristics Jt(ΨC) is calcu-
lated in the following way. First the parameters β0, Θ,
µ, N and ϕ are selected. In this work we are interested
in thermal electron emission from the collector, so we al-
ways put γi = γ = 0. The range of the selected values
of β0, Θ, µ, N and ϕ has been explained in the previous
paragraphs. When the parameters are selected the bound-
ary sheath potential drop ΨCT , where the transition be-
tween the space charge limited and the temperature lim-
ited emission for a given JR occurs, must be found. This
is done by solving the system of equations (39) and (40)

for ΨCT and M . The derivative dΨ/dz on the left hand
side of equation (40) is set equal to zero. Then ΨC is
varied as an independent variable. For ΨC ≤ ΨCT (tem-
perature limited emission) the Mach number M is found
from (39) for every ΨC . Then the fluxes J

(1)
e , J

(2)
e , Ji and

Jt are obtained using (41), (42), (44) and (45) respec-
tively, while J

(3)
e is equal to JR for every ΨC ≤ ΨCT . For

ΨC ≥ ΨCT (space charge limited emission) the system of
equations (39) and (40) is solved for M and JR for ev-
ery ΨC ≥ ΨCT . Then the fluxes J

(1)
e , J

(2)
e , J

(3)
e , Ji and

Jt are obtained from (41)–(45). For γi = γ = 0 the space
charge limited current density J

(3)
e given by the (43) is of

course equal to JR found from the system of equations (39)
and (40).

In Figure 4 we show some properties of the solutions
of the system of equations (39) and (40). The following
parameters are selected: µ = 1/1836, β0 = 0.124, ϕ = 0.2,
N = 60, γi = γ = 0 and JR = 21, while Θ is gradually
increased from 1 to 50. Every time the system of equations
(39) and (40) is solved for ΨCT and M and the solutions
are plotted versus Θ.

For small values of Θ the system of equations (39)
and (40) only has the low solution. When Θ reaches a cer-
tain value, which is in this case around Θ ≈ 13.2, also the
medium and the high solution of the system (39) and (40)
appear. When Θ is further increased at approximately
Θ ≈ 27.5, the low solution suddenly splits into 3 solu-
tions so that the system of equations (39) and (40) has
5 solutions all together. Two additional solutions that ap-
pear after the low solution splits into 3 parts also belong
to the low solution, because the corresponding M is close
to 1. This splitting is shown in the bottom figures on an
expanded scale.

In Figure 5 we show the dependence of the abso-
lute value of the space charge limited emission current



450 The European Physical Journal D

Fig. 4. (Color online) The solutions
ΨCT and M of the system of equa-
tions (39) and (40) versus Θ. The other
parameters are: µ = 1/1836, β0 = 0.124,
ϕ = 0.2, N = 60, γi = γ = 0 and
JR = 21. In the bottom figures the split-
ting of the low solution is shown on an
expanded scale.

Fig. 5. Absolute value of the space
charge limited emission current density

J
(3)
e versus ΨC for different values of pa-

rameters β0, Θ, N and ϕ. The values of
the other parameters are given in the
text.

density J
(3)
e on ΨC . For the top left figure we select

µ = 1/1836, Θ = 50, N = 60, γi = γ = 0, ϕ = 0.2 and 3
different β0 are selected. For each set of parameters equa-
tions (39) and (40) are solved for M and JR. Because we
have selected γi = γ = 0 the obtained JR is equal to the
space charge limited emission current density J

(3)
e . In the

top right figure we put µ = 1/1836, β0 = 0.11, N = 60,
γi = γ = 0, ϕ = 0.2 and 3 different Θ are selected. Sim-
ilar is done in the bottom left figure, where we select:
µ = 1/1836, Θ = 30, β0 = 0.11, γi = γ = 0, ϕ = 0.2 and
3 different N are selected.

As we can see, the absolute value of the space charge
limited current density J

(3)
e as a function of ΨC can have

a local maximum and a minimum, especially if the val-
ues of N and Θ are high. Solving the system of equa-
tions (39) and (40) means in fact finding the intersection
of the J

(3)
e (ΨC) curve with a selected value of JR. In de-

pendence on the choice of parameters one can have 1, 2 or
even 3 solutions for ΨCT . This is illustrated in the bottom
right of Figure 5, where J

(3)
e (ΨC) is plotted for 3 different

values of ϕ, while the other parameters are: µ = 1/1836,
β0 = 0.11, N = 60, γi = γ = 0 and Θ = 50. The line,
which represents the Richardson current density JR = 23.9
is also plotted in this figure. This line has 1 intersection
with the J

(3)
e (ΨC) curve when ϕ = 0.13, 2 intersections

when ϕ = 0.12 and 3 intersections when ϕ = 0.11.
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Fig. 6. The total current density Jt to the collector versus ΨC

for the following parameters: µ = 1/1836, β0 = 0.11, N = 60,
γi = γ = 0, ϕ = 0.32, Θ = 50 and JR = 21. Only the low
solution of the system of equations (39) and (40) is considered.
In the bottom figure the triple crossing of the zero current line
(3 floating potentials) is shown on an expanded scale.

Table 1. Solutions of the system of equations (39) and (40) for
µ = 1/1836, β0 = 0.11, N = 60, ϕ = 0.32, Θ = 50, γi = γ = 0
and JR = 21.

ΨCT M
–2.24012 1.3253
–7.75204 1.22179
–160.621 1.14692
–25.8833 7.57701
–223.926 2.86203

From the bottom right of Figure 5 we see the follow-
ing. If JR is smaller than the local minimum of J

(3)
e (ΨC),

then ΨCT is very close to zero and almost the entire
current voltage characteristics is in the temperature lim-
ited regime. If JR is larger than the local maximum of
J

(3)
e (ΨC), then ΨCT is very negative and almost the en-

tire current voltage characteristics is in the space charge
limited regime. If JR is between the local minimum and
the local maximum of the J

(3)
e (ΨC) curve, then one must

take care of the transitions between space charge limited
and temperature limited emission, when calculating the
characteristics.

This is illustrated in Figure 6, where the total current
density Jt is plotted versus ΨC . The following parameters
are selected: µ = 1/1836, β0 = 0.11, ϕ = 0.32, N = 60,
Θ = 50,γi = γ = 0 and JR = 21. For these parameters
the system of equations (39) and (40) has 5 solutions for
ΨCT and M that are given in Table 1.

Fig. 7. Current density Jt to the collector versus ΨC for dif-
ferent values of JR and the following parameters: µ = 1/1836,
β0 = 0.04, γi = γ = 0, N = 0, ϕ = 0.2 and Θ = 20. In the
top figure the characteristics with M close to 1 are plotted,
in the bottom figure the characteristics with M close to

√
Θ

are plotted, and in the middle figure the characteristics that
belong to the medium solution of the system of equations (39)
and (40) are plotted.

When M is close to 1 the current voltage character-
istics has 3 transitions between space charge limited and
temperature limited emission that occur at potentials ΨCT

given in Table 1. The Jt(ΨC) curve crosses the zero line of
Jt 3 times. This is shown in the bottom figure on an ex-
panded scale. This means that for certain plasma param-
eters and electron emission fluxes the collector can have
even 3 different floating potentials. In Figure 6 these float-
ing potentials are: Ψf1 = –22.7218, Ψf2 = –11.1368 and
Ψf3 = –6.67303. Ψf1 and Ψf2 are in the space charge lim-
ited region and Ψf3 is in the temperature limited region.
The floating potential are found by solving the system of
equations (39) and (45), where Jt in equation (45) is equal
to zero.

The Richardson emission current density JR has strong
impact to the floating potential. We show this in Figure 7
where the current voltage characteristics for several JR

are plotted. The other parameters are kept constant:
µ = 1/1836, β0 = 0.04, ϕ = 0.2, γi = γ = 0, N = 0
and Θ = 20. They are selected so that the space charge
limited emission current J

(3)
e is a monotonous function of

ΨC and the system of equations (39) and (40) only has
3 (and not 5) solutions. As JR increases also the float-
ing potential increases (becomes less negative), while the
boundary potential ΨCT between the temperature lim-
ited and space charge limited emission decreases (becomes
more negative). At certain JR they become equal. If JR is
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Fig. 8. The floating potential Ψf and
the boundary potential ΨCT between the
space charged limited and the temperature
limited emission versus JR for the follow-
ing parameters: µ = 1/1836, β0 = 0.04,
N = 0, γi = γ = 0, ϕ = 0.2, and Θ = 20. In
the left figure the low solution in the mid-
dle figure the medium solution and in the
right figure the high solution of the system
of equations (39) and (40) is shown. Below
the ΨCT (JR) curve is the region of tem-
perature limited emission and above this
curve is the region of space charge limited
emission.

Fig. 9. The floating potential Ψf and
the boundary potential ΨCT between the
space charged limited and temperature
limited emission versus JR for the follow-
ing parameters: µ = 1/1836, β0 = 0.11,
N = 60, γi = γ = 0, ϕ = 0.32 and Θ = 50.
In the top left figure the low solution of
the system of equations (39) and (40) is
shown. In the top right figure the intersec-
tions between the Ψf and the ΨCT curve
are shown on an expanded scale. In the
bottom left figure the high solution is il-
lustrated and in the bottom right figure
the medium solution is plotted.

further increased, the floating potential can not increase
any more, because it must not exceed the boundary po-
tential of the space charge limited emission. So even if
JR further increased, the floating potential Ψf remains
constant.

We illustrate this in Figure 8 where we plot the bound-
ary potential ΨCT between the space charge limited and
the temperature limited emission and the floating po-
tential Ψf versus JR for the same parameters that have
been selected also in Figure 7 and they are the following:
µ = 1/1836, β0 = 0.04, γi = γ = 0, N = 0, ϕ = 0.2 and
Θ = 20. The curves of the boundary potential ΨCT (JR)
are found by solving the system of equations (39) and (40)
for M and ΨC , while JR is gradually increased. The curve
of the floating potential Ψf (JR) is found by solving the
system of equations (39) and (45) for M and ΨC , while
JR is gradually increased. We put Jt = 0 in equation (45).

For the selected parameters both systems of equations,
namely the system of equations (39) and (40), as well as

the system of equations (39) and (45) only have 3 solu-
tions. For the low solution Ψf and ΨCT become equal at
Ψf = ΨCT = –1.43944 and JR = 7.39151. This is plot-
ted in the left of Figure 8. In the middle of Figure 8 the
medium solution is plotted. In this case Ψf and ΨCT be-
come equal at Ψf = ΨCT = –24.9379 when JR = 16.4546.
In the right of Figure 8 the high solution is shown. In this
case Ψf and ΨCT become equal at Ψf = ΨCT = –19.0192
with JR = 22.2661. The intersections of the ΨCT (JR) and
Ψf(JR) curves are found by solving the system of equa-
tions (39), (40) and (45) for M , ΨC and JR. The ΨCT (JR)
curve divides the ΨCT − JR plane in two regions. Below
the ΨCT (JR) curve is the region of temperature limited
electron emission and above this curve there is the region
of space charge limited electron emission.

In Figure 9 we show again the dependence of ΨCT and
Ψf on JR, only now we select the same parameters as in
Figure 6, which are: µ = 1/1836, β0 = 0.11, γi = γ = 0,
N = 60, ϕ = 0.32 and Θ = 50. For these parameters
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the system of equations (39) and (40) has 5 solutions,
while the system of equations (39) and (45) only has 3 so-
lutions. In the top left figure we show the low solution.
As JR increases the Ψf (JR) curve starts in the tempera-
ture limited region then goes into the space charge lim-
ited region, then returns into the temperature limited re-
gion and then it goes into the space charge limited region.
The intersections of the ΨCT (JR) and Ψf (JR) curves oc-
cur at potentials Ψf and ΨCT equal to –22.7218, –11.1368
and –4.02174. The respective emission currents JR are
equal to 15.309, 19.29 and 22.2677. These intersections are
shown in the top right figure on an expanded scale. In the
bottom left figure the high solution is shown. The ΨCT (JR)
and Ψf (JR) curves intersect at Ψf = ΨCT = –41.6571 and
JR = 39.5771. In the bottom right figure the medium so-
lution is shown. The ΨCT (JR) and Ψf (JR) curves intersect
at Ψf = ΨCT = –158.466 and JR = 1.66944.

4 Conclusions

We have analyzed the formation of the plasma potential
in front of a negative electrode that emits electrons and
is immersed in a two electron temperature plasma by a
simple one dimensional fluid model. The model is based
on the approximation that the sheath thickness is much
larger than the Debye length but in the same time also
much smaller than the characteristic length of the pre-
sheath. Inside the sheath the Boltzmann distribution of
the hot and of the cool electrons is assumed. The ions and
the emitted electrons are assumed to be monoenergetic.
Energy and flux conservation of all 4 particle species in
the sheath is also assumed. In order to estimate the po-
tential drop in the pre-sheath several simplifications are
made. The hot and the cool electrons are assumed to be
Boltzmann distributed also in the pre-sheath. Also the
density of the emitted electron in the pre-sheath is is as-
sumed to be a known function of the potential. This func-
tion does not need to be specified, because we don’t actu-
ally solve the Poisson equation in the pre-sheath. In the
planar geometry of our model the two mechanisms that
compensate the dynamic ion density decrease caused by
the acceleration of the ions in the pre-sheath are the mo-
mentum exchange collisions of the ions with the neutrals
and the electrons and the creation and the destruction of
ions by ionization and recombination. The energy that the
ions lose through both these mechanisms is treated in our
model as a single independent parameter.

The presence of the hot electrons in the plasma has
several effects. The first one is that there are two differ-
ent potential drops possible in the pre-sheath region at
the same plasma parameters far away from the electrode.
The model predicts 3 different possible velocities of the
ions at the sheath edge. One of them is determined by
the hot electron temperature the second is determined by
the cool electron temperature and the third one is inter-
mediate. Multiple solutions for the velocity of ions at the
sheath entrance when 2 groups of negative particles are
present in the plasma have been found also by some other
authors [12–14]. This result is in agreement with a well

known fact that a spontaneous formation of current-free
double layers [28] in a plasma is possible, when there is
more than 1 group of negative particles present in the
plasma. Such double layers have been observed in com-
puter simulations [7,13,29] and experiments [30–32].

Another consequence of the presence of the hot elec-
trons in the plasma is that the space charge limited elec-
tron emission current may have a very pronounced local
minimum and maximum when regarded as a function of
the electrode potential. This only happens when the pre-
sheath potential drop is determined by the cool electrons
and it usually happens when the hot electron temperature
is a bit elevated (roughly at least approximately 30 times
higher than the cool electron temperature). A nonzero ini-
tial velocity of emitted electrons also has an impact on
the maxima and minima of the critical electron emission
current. If the initial velocity of the emitted electrons is
increased, the local maximum and minimum of the critical
electron emission current appear at lower temperature of
the hot electrons. For some values of β0, Θ, N and JR the
current voltage characteristics of the electrode can cross
the zero collector current line up to 3 times. This means
that the floating potential of the electrode may have up
to 3 different values. Triple valued floating potential can
be found in rather narrow intervals of hot to cool elec-
tron density and temperature ratios. Three floating po-
tentials of an electron emitting electrode immersed in a
plasma with energetic electrons have been observed ex-
perimentally by Nam et al. [26] and also by Griskey and
Stenzel [27]. In both these papers the electron emission
from the electrode was secondary — caused by the im-
pact of energetic electrons from the plasma. We have on
the other hand in this work focused our attention to the
current-voltage characteristics of an electrode with ther-
mal emission of electrons. Nevertheless one of our main re-
sults — namely the triple floating potential of an electron
emitting electrode — is rather similar to those reported
in [26,27]. Our model can also be used for the analysis
of the current-voltage characteristics of an electrode with
secondary emission of electrons, when this emission is trig-
gered either by the impacting electrons and/or ions and
also for the situation when both (thermal and secondary)
electron emission mechanisms are present.

In this work we have studied the transition between
the space charge limited and the temperature limited elec-
tron emission. The obtained results could be relevant for
the emissive probe applications in spite of the fact that
the geometry of our model is planar, while the emissive
probes are usually thin wires and therefore the cylindrical
geometry would be more appropriate. Models with pla-
nar geometry [17] have been successfully applied for the
analysis of the emissive probe characteristics. In an ex-
periment one usually takes the floating potential of the
emissive probe (which is measured with respect to some
reference electrode) as the plasma potential. The actual
plasma potential is somewhat more positive, but the dif-
ference is usually neglected. In our model we calculate the
total flux to the collector Jt as a function of the potential
drop in the sheath ΨC , which in our model is treated as
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an independent variable. By analogy with the experiment,
we should observe what happens with ΨC , where Jt = 0
(floating potential), when parameters β, Θ, N and JR are
varied. Variation of JR in the model is analogous to the
variation of the probe heating in the experiment. The sim-
plest procedure for measurement of the plasma potential
by an emissive probe is the following. The probe heat-
ing is gradually increased and the floating potential of the
probe is measured. This potential increases with increased
heating of the probe until a certain saturation value of the
floating potential is reached. If the probe is further heated,
the emission current still increases, but the floating poten-
tial does not change any more. Very often the probe heat-
ing is set somewhat above the saturation level, so that
the emission current from the probe at strongly negative
probe biases is approximately equal or somewhat larger
(by the absolute value) than the current collected at the
inflection point of the probe characteristics.

The results of our model are in agreement with this ex-
perimental practice. When JR is increased (starting from
zero), the sheath potential drop Ψf that corresponds to
the floating collector increases (becomes less negative) and
the sheath potential drop ΨCT where the transition be-
tween the space charge limited and the temperature lim-
ited emission occurs, decreases (becomes more negative).
At certain JR they become equal. If JR was further in-
creased, Ψf would become larger (less negative) than ΨCT .
But for collector potentials that are larger (less negative)
than ΨCT , the electron emission current is space charge
limited and must be calculated from the zero electric field
condition for every collector potential separately. Because
of that the floating potential of the collector does not
change any more even if JR is further increased and a
saturation of the floating potential is reached. The results
of our model suggest that the saturation of the floating
potential is achieved already at the values of JR that are
smaller than the values of Jt at ΨC = 0.

This work has been carried out within the Association
EURATOM-MHST. The content of the publication is the sole
responsibility of its authors and it does not necessarily repre-
sent the view of the Commission or its services. The authors
would also like to thank to one of the referees who contributed
considerably to the improvement of the paper.
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